- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Anderegg, Loïc (4)
-
Bao, Yicheng (4)
-
Burchesky, Sean (4)
-
Doyle, John M. (4)
-
Ketterle, Wolfgang (4)
-
Augenbraun, Benjamin L. (2)
-
Chae, Eunmi (2)
-
Cheuk, Lawrence W. (2)
-
Ni, Kang-Kuen (2)
-
Yu, Scarlett S. (2)
-
Karman, Tijs (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Anderegg, Loïc; Augenbraun, Benjamin L.; Bao, Yicheng; Burchesky, Sean; Cheuk, Lawrence W.; Ketterle, Wolfgang; Doyle, John M. (, Nature Physics)
-
Cheuk, Lawrence W.; Anderegg, Loïc; Augenbraun, Benjamin L.; Bao, Yicheng; Burchesky, Sean; Ketterle, Wolfgang; Doyle, John M. (, Physical Review Letters)
-
Anderegg, Loïc; Burchesky, Sean; Bao, Yicheng; Yu, Scarlett S.; Karman, Tijs; Chae, Eunmi; Ni, Kang-Kuen; Ketterle, Wolfgang; Doyle, John M. (, Science)Harnessing the potential wide-ranging quantum science applications of molecules will require control of their interactions. Here, we used microwave radiation to directly engineer and tune the interaction potentials between ultracold calcium monofluoride (CaF) molecules. By merging two optical tweezers, each containing a single molecule, we probed collisions in three dimensions. The correct combination of microwave frequency and power created an effective repulsive shield, which suppressed the inelastic loss rate by a factor of six, in agreement with theoretical calculations. The demonstrated microwave shielding shows a general route to the creation of long-lived, dense samples of ultracold polar molecules and evaporative cooling.more » « less
An official website of the United States government
